Nachhaltigkeit von Wasserstoff: Die „Farbe“ macht den Unterschied

Prof. Dr. Clemens Hoffmann empfiehlt Wasserstoff dort einzusetzen, wo es keine wirtschaftlichen Alternativen gibt.

Prof. Dr. Clemens Hoffmann hat mit seinem Team in einer Studie den Einsatz von Wasserstoff im künftigen Energiesystem untersucht. Bildquelle: Fraunhofer IEE / Volker Beushausen

Das eigentlich farblose Gas Wasserstoff wandelt sich in der Debatte um ein Energiesystem der Zukunft wie ein Chamäleon. Mit der Anlehnung an eine Farbenlehre soll deutlich werden, dass Wasserstoff sehr unterschiedlich erzeugt werden kann. Denn das ist entscheidend für die CO2-Bilanz und die sinnvolle Nutzung als Energieträger. In einer Studie hat das Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik (IEE) die Effizienz der verschiedenen Herstellungsformen und Anwendungsbereiche verglichen.

Wasserstoff gilt als universelle Energielösung der Zukunft. Allein aus Anwendersicht hat Wasserstoff viele Vorteile. Er ist stofflich vielseitig verwendbar und verbrennt als Energieträger ohne CO2-Emissionen. Dabei wird allerdings außer Acht gelassen, dass Wasserstoff nicht natürlich vorkommt, sondern mit hohem Energieeinsatz produziert werden muss. Ein Forscherteam unter Leitung von Professor Clemens Hoffmann hat nun die Anwendung von Wasserstoff unter Effizienzkriterien untersucht. Die Studie entstand im Auftrag des Informationszentrum Wärmepumpen und Kältetechnik (IZW).

Die Wasserstofftechnologie ist bereits seit langem erprobt, hat sich aber aufgrund der Wirkungsgradverluste, die beim Umwandeln auftreten, bisher nicht in großem Stil durchgesetzt. Erst mit dem massiven Bedarf an CO2-freier Verbrennung kommen die Vorteile von Wasserstoff zum Tragen. Auch die Bundesregierung sieht im Wasserstoff ein strategisches Element für die weiteren Schritte der Energiewende.

Der bisher verwendete Wasserstoff ist überwiegend fossilen Ursprungs. Im Zuge der Dekarbonisierung haben sich weitere Verfahren entwickelt. Die Methoden zur Herstellung von Wasserstoff reichen vom Betrieb eines Elektrolyseurs mit Strom aus erneuerbaren Energien oder Kernenergie, durch Umwandlung von Erdgas oder Biogas mit Abspaltung und Einlagerung des CO2. Um die Unterschiede in der Herstellung von Wasserstoff deutlich zu machen, wird dem Endprodukt symbolisch eine Farbe zugeordnet.

Für die Beschreibung von Wasserstoff werden unterschiedliche Farben verwendet.

Um die Nachhaltigkeit von Wasserstoff zu verdeutlichen, werden die verschiedenen Verfahren durch Farben klassifiziert. Bildquelle: Fraunhofer IEE

 

Grüner Wasserstoff als Speicher für Stromüberschüsse

Sogenannter grüner Wasserstoff wird aus Stromüberschüssen aus Sonnen- und Windenergie über einen Elektrolyseur erzeugt. Der hohe Energiebedarf bei der Herstellung wird dadurch gerechtfertigt, dass die eingesetzte Energie in Zeiten von Erzeugungsspitzen, nicht anders verwendet und auf diese Weise gespeichert werden kann. Durch die Erzeugung von Wasserstoff wird erneuerbarer Strom quasi in die Welt der Moleküle überführt.

Beim grünen Wasserstoff wird zudem noch unterschieden, ob dieser über Elektrolyse aus Stromüberschüssen aus PV- und Windanlagen hergestellt wird oder aus Biomethan oder anderen biologischen Prozessen gewonnen wird. Bei Biomethan wird das CO2 abgespalten und muss über Carbon Capture and Storage (CCS) eingespeichert werden. Dies wäre auch für schwarzen Wasserstoff, der aus der Vergasung von Kohle und Öl gewonnen werden kann, der Fall.

Grauer Wasserstoff wird aus Erdgas hergestellt, ohne dass das CO2 über CCS entsorgt wird. Weitere Klassifizierungen sind pinker Wasserstoff, der über Elektrolyse aus Kernenergiestrom und türkiser Wasserstoff, der über Methanpyrolyse aus Erdgas erzeugt wird.

Als weißen Wasserstoff werden natürliche geologische Wasserstoffvorkommen bezeichnet. Diese sind als freies Gas, als Einschlüsse in Felsformationen sowie als gelöstes Gas im Grundwasser bekannt. Die grundsätzliche technische und wirtschaftliche Nutzbarkeit dieser Vorkommen werden erst in Forschungsprojekten untersucht.

Nach Einschätzung von Fraunhofer IEE sollte künftig ausschließlich regenerativ erzeugter Wasserstoff eingesetzt werden. Die technische- und wirtschaftliche Reife für die Bereitstellung von CO2- freiem »grünem« Wasserstoff für industrielle Prozesse und Mobilität ist nach den Ergebnissen der Studie hoch. Um auf die in Deutschland benötigten Mengen zu kommen, müsste ein erheblicher Teil importiert werden. Die Hoffungen richten sich hier auf mögliche Produktionsanlagen in Nordafrika. Allerdings würde Deutschland dann in Konkurrenz zu anderen Importländern stehen. Daher sollte mit dieser kostbaren Ressource sparsam umgegangen werden.

Blauer Wasserstoff aus Erdgas

Beim CO2-armen »blauen« Wasserstoff sei derzeit unklar, ob Herstellung und Transport es zulassen, dass er überhaupt wirtschaftlicher sein kann, als der elektrolytisch hergestellte grüne Wasserstoff. Zudem ist die Speicherung des abgespaltenen CO2 im Boden umstritten. „Eine Erzeugung hochkonzentrierten Kohlendioxids in Mengen von Milliarden von Kubikmetern pro Jahr wirft ähnlich wie bei der Kernenergie die Frage nach Gefahr eines größten anzunehmenden Unfalls auf. Diese Fragen werden bisher noch gar nicht erörtert“, gibt Hoffmann zu bedenken.

Aus Gründen der Wirtschaftlichkeit wird oft argumentiert zunächst mit „blauem“ Wasserstoff aus Erdgas ein System aufzubauen, bevor Wasserstoff aus erneuerbaren Energien in großem Maßstab zur Verfügung steht. Die Fraunhofer Studie empfiehlt hingegen, die möglichen Anwendungen von Wasserstoff kritisch zu hinterfragen und Alternativen der Dekarbonisierung einzubeziehen. Insbesondere für den Wärmemarkt empfehlen die Wissenschaftler anstelle der bisherigen Gasheizungen Wärmepumpen einzusetzen.

Ranking der Wasserstoffanwendungen

„Wasserstoff sollte vor allem dort Anwendung finden, wo keine alternativen Energieträger zur Verfügung stehen“, so Hoffmann. Als Einsatzkriterium schlagen die Wissenschaftler ein Ranking nach der Effizienz vor. Vorteilhaft sei der Einsatz vom Wasserstoff in der Industrie bei der Herstellung von Ammoniak, Methanol und Stahl. Außerdem sehen die Forscher eine sinnvolle Anwendung in Kraftwerken zur Stromerzeugung, wenn erneuerbare Energien nicht zur Verfügung stehen. Notwendig sei der Einsatz von Wasserstoff in der Erzeugung von synthetischen Kraftstoffen im internationalen Verkehr oder von Rohstoffen wie Ethylen.

Unterschiedliche Anwendungen für Wasserstoff

Wasserstoff sollte möglichst dort eingesetzt werden, wo wenig Alternativen zur Verfügung stehen. Bildquelle: Fraunhofer IEE

Zu den voraussichtlich 2050 benötigten Wasserstoffmengen gibt es verschiedene Studien, die zu unterschiedlichen Ergebnissen kommen. Die Szenarien des Fraunhofer IEE aus dem Energiewende-Barometer gehen von 566 TWh aus. Darin enthalten ist ein Bedarf von 192 TWh für die direkte Nutzung in Verkehr, Industrie und Kraftwerken. Für den internationalen Verkehr im Jahr 2050 und den nichtenergetischen Verbrauch ermittelten die Forscher 306 TWh sowie einen Restbedarf von 68 TWh. Damit liegt die Autoren eher im unteren Bereich der Abschätzungen. Andere Szenarien mit einem hohen Anteil von chemischen Energieträgern erwarten bis zu 220 TWh für den Straßenverkehr, ein Drittel davon für den Schwerlastverkehr.

Alternativen für den Wärmemarkt

Als weitere Anwendung ist der Wärmemarkt in der Diskussion. Hier könnte in den Privathaushalten künftig Wasserstoff anstelle von Erdgas verbrannt werden. Diese Anwendung halten die Wissenschaftler des IEE aber für wenig sinnvoll. Das Heizen von Wohngebäuden könne wesentlich effizienter über Wärmepumpen umgesetzt werden: „Eine Umwidmung des heutigen Anteils von 50 Prozent Erdgas an der Gebäudewärme würde einen zusätzlichen Bedarf von 250 TWh thermischer Nutzung des Wasserstoffs zur Deckung des Wärmebedarfs in Gebäuden bedeuten. Der Wärmesektor würde also zu einer Erhöhung des zukünftigen deutschen Wasserstoffbedarfs um 25 bis 40 Prozen führen“, so Hoffmann.

Die Forscher begründen ihre Empfehlung vor allem damit, dass bei der Herstellung von Wasserstoff die Wirkungsgradverluste erheblich sind, während bei der Wärmpumpe ein Hebel dafür sorge, dass mehr Energie in Form von Wärme oder Kälte zur Verfügung stehe als in Form von Strom eingesetzt werde.

Der Transport von Wasserstoff kann über Pipelines oder Tanker erfolgen. Das gut ausgebaute Erdgasnetz in Europa könnte dazu in Teilen für den Wasserstofftransport umgerüstet werden. In dem von Fraunhofer vorgeschlagenen Szenario würden zudem auf der Verteilnetzebene deutlich weniger Leitungen benötigt, da die Wohngebäude über Wärmepumpen beheizt würden.

 

http://www.iee.fraunhofer.de

Link zur Studie: https://www.iee.fraunhofer.de/content/dam/iee/energiesystemtechnik/de/Dokumente/Studien-Reports/FraunhoferIEE_Kurzstudie_H2_Gebaeudewaerme_Final_20200529.pdf

 

 

Kommentar verfassen

Diese Website verwendet Akismet, um Spam zu reduzieren. Erfahre mehr darüber, wie deine Kommentardaten verarbeitet werden.