Second Live für Wärme aus Industrieprozessen

Es qualmt, raucht und dampft. Viele industrieelle Prozesse benötigen hohe Temperaturen und anschließend wird die Wärme an die Umgebung abgegeben. Dabei gilt diese Wärme als CO2-frei und ohne zusätzlichen Brennstoff erzeugt, da prozessbedingt (also „eh da“). Könnte diese „eh-da“-Wärme nicht verstärkt zum Beheizen von Wohnungen oder öffentlichen Einrichtungen genutzt werden? Auf der Online-Veranstaltung „Warm, wärmer, heiß“ der EnergieAgentur.NRW wurden Möglichkeiten der Abwärmenutzung vorgestellt.

Eine Studie im Auftrag des Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (LANUV) hat die industrielle Abwärme konkret von 105 Unternehmen im Rahmen einer Hot-Spot-Analyse ausgewertet. Von dem verfügbaren Abwärmepotenzial von 4,6 TWh pro Jahr könnten 2,3 TWh pro Jahr technisch verwendet werden und für 2,2 TWh pro Jahr wären sogar Wärmenetze verfügbar.

Online-Wärmekataster gibt Überblick

In der Abschätzung für das gesamte Bundesland kommt die Studie auf 7,2 TWh pro Jahr. Etwa die Hälfte dieser Abwärme stammt aus der Metallerzeugung und -bearbeitung, 11 Prozent aus der Chemieindustrie und 17 Prozent aus dem Bereich Glas, Keramik, Steine und Erden. Die ermittelten Daten wurden in einem Online-Wärmekataster dokumentiert. Unterschieden wird dabei zwischen Wärmequellen aus Abwärme und erneuerbaren Energien. Bei den Wärmesenken wird zwischen Wohngebäuden, Nichtwohngebäuden und Fern-/Nahwärmenetz differenziert. Auf diese Weise lässt sich prüfen, ob ein Wärmebedarf durch eine nahliegende Wärmequelle gedeckt werden kann. Die transparente Aufbereitung der Daten ist ein erster Schritt, um für Abwärme eine zusätzlichen Verwendung zu finden.

Etwa die Hälfte der gefundenen Abwärme lässt sich in Wärmenetzen nutzen.

Bei einer Untersuchung von 105 Unternehmen wurde ein Potenzial von 4,6 TWh/a gefunden. (Quelle: LANUV)

Der Verband der Industriellen Kraftwirtschaft (VIK) hat sich weitergehend mit der Frage beschäftigt, wie Abwärme effizient genutzt werden kann: „Aus Gründen der Effizienz sollte Abwärme möglichst vermieden werden oder in den Prozess zurückgeführt werden,“ empfiehlt Markus Gebhardt, VIK. Dabei sei die Heizung der Betriebsgebäude ist eine besonders effiziente Variante, da dies vor Ort möglich ist. Die Abwärme könne auch in Strom oder Kälte umgewandelt werden.

Temperatur entscheidet über effizienten Einsatz

Wichtig sei es auch zu differenzieren: „Abwärme ist nicht gleich Abwärme. Der Einsatzbereich unterscheidet sich nach der Temperatur“, betont Gebhardt. Dampf von 250° bis 540 °C sei besonders für die Stromerzeugung geeignet. Temperaturen von 125° bis 400 °C eigneten sich für die Vorwärmung von Speisewasser und Verbrennungsluft. Trocknungsprozesse arbeiteten Temperaturen von 125° bis 275 °C. Die Kälteerzeugungen funktioniere mit 80° bis 160° C. Für Heizung und Warmwasser seien Temperaturen von 75 ° bis 125° C nötig.

Ganz anders ist der Wärmebedarf hingegen in Wohngebäuden. „Für die Erwärmung von Wasser, den Betrieb von Wärmepumpen oder die Heizung muss die Abwärme eine Temperatur von 30° bis 75°C haben. Dies zeigt, wie niedrig die Temperaturen für Wohnquartiere im Vergleich zu Industrieprozessen sind“, erläutert Gebhardt.

Interesse ist vorhanden…

Auch wenn es technisch plausibel ist, die Wärme möglichst innerhalb der Industrie weiterzuverwenden, ist das Thema Wärmekooperation und die externe Abwärmenutzung für viele Unternehmen noch Neuland. Nach den Erhebungen von LANUV haben 35 Prozent der Unternehmen ein Interesse an einer Abwärmekooperation als Wärmequelle, 12 Prozent der Unternehmen würden externe Wärme aufnehmen. Als Hemmnis sehen die Befragten, dass Kapitalbindung und Finanzierung der Abwärmenutzung nicht zum Kerngeschäft der Unternehmen gehören.

…aber wirtschaftliche Anreize fehlen

Zudem sind die wirtschaftlichen Anreize eher gering, da zunächst einmal in einen Wärmetauscher und ein Nahwärmenetz investiert werden muss, um die Wärmequelle zu erschließen. Staatliche Unterstützung bietet das Bundesförderungsprogramm „Energieeffizienz und Prozesswärme aus Erneuerbaren Energien in der Wirtschaft“ mit einem Investitionszuschuss oder zinsgünstigen Krediten über die KfW. Das Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA) fördert die „Energiebezogene Optimierung von Anlagen und Prozessen“. Dazu zählt die energetische Optimierung in Industrie und Gewerbe und die Nutzung von Wärme aus erneuerbaren Energien für gewerbliche Prozesse. Die bestehende Förderprogramme reichen allerdings nach Einschätzung von 31 Prozent der Befragten aus der LANUV-Studie nicht aus.

Second Life in großem Maßstab: Fernwärmemodernisierung in Dortmund

Erst wenn die Möglichkeiten innerhalb der Industrie ausgeschöpft sind, wird eine externe Verwendung sinnvoll. Um Abwärme zum Heizen eines Quartiers zu nutzen, muss dieses an ein Fernwärmenetz angeschlossen werden. Dass dies auch in bereits vorhanden Siedlungsstrukturen möglich ist, zeigt ein Beispiel aus Dortmund. Mit dem Projekt IQ hat der Wärmeversorger DEW 21 das Fernwärmenetz erneuert und als Wärmelieferanten verschiedene Kraft-Wärme-Kopplungsanlagen (KWK) sowie das Unternehmen Deutsche Gasrusswerke integriert: „Durch die Kopplung industrieller Abwärme und KWK-Anlagen mit dem Fernwärmenetz können jährlich 45.000 Tonnen CO2 vermieden werden. Das entspricht dem Ausstoß von 30.000 PKW,“ erläutert Bastian Stegemann, DEW 21, den Erfolg für den Klimaschutz.

Vor dem Hintergrund eines industriellen Strukturwandels ist Verbindung zwischen Produktionsstätten und Wohneinheiten nicht risikolos. „Kommt es zu einer Schließung des wärmeliefernden Industriebetriebes, müsste eine andere Wärmequelle aufgebaut werden“, warnt Gebhardt und verweist insbesondere auf eine Neuausrichtung der Industrie im Zuge der Dekarbonisierung.

Eine weitere Herausforderung ist, rund um die Uhr zuverlässig Wärme zu liefern, unabhängig davon, ob der industrielle Prozess diese auch produziert. Für Wartungszeiten oder Phasen geringerer Auftragslage muss eine Backup-Lösung geschaffen werden. Innerhalb eines Wärmenetzes lassen sich dazu verschiedene Einspeiser kombinieren, die sich gegenseitig ausgleichen können. Dazu kommen Abfallverwertung, KWK-Anlagen, Power-to-Heat-Anlagen, Geothermie, Solarthermie, Biomasse und Groß-Wärmepumpen in Frage.

 

Eine Zweitverwendung von industrieller Abwärme ist CO2-frei.

Industrielle Abwärme ist ein Aspekt einer Wärmelieferung. Aber ein Teil der „eh-da“ ist. Bildquelle: EnergieAgentur.NRW

 

Der hohe Energiegehalt der Abwärme legt nahe in Größenordnungen zu denken, die Skaleneffekte ermöglichen. So können Fernwärmenetze sehr viele Nutzer gleichzeitig versorgen. Lohnt sich der Aufbau einer kompletten Netzinfrastruktur nicht, bedeutet das andererseits nicht, dass die Abwärme nicht weiterverwendet werden kann.

Second Life dezentral: Wärme aus dem LKW

Denn es gibt auch kleinteiligere Lösungen, die mit unterschiedlichen Speichermedien arbeiten. Eine Antwort auf die Dezentralität bei der Verwendung von Abwärme hat das Beratungsunternehmen swilar gefunden und dazu das Tochterunternehmen swilar eetec gegründet. Die Wärme wird in mobilen Tanks gespeichert und über die Straße zum Verbraucher transportiert. Die LKW ähneln Tankwagen und verbinden in einem Umkreis von bis zu 15 km eine Wärmequelle mit einer Wärmesenke.

Der Speichertank auf der Basis von Natriumacetat-Trihydrat – auch als Pökelsalz bekannt – lässt sich innerhalb von 6 bis 8 Stunden aufheizen und ebenso lange für die Wärmelieferung nutzen. Das bedeutet einen Schichtbetrieb mit regelmäßigen Fuhren. Für eine Wärmeversorgung rund um die Uhr sind drei LKW-Ladungen mit 2,5 MWh Wärme pro Anlieferung innerhalb von 24 Stunden ausreichend.

Das spezielle Speichermedium ist gefahrlos transportierbar und ungiftig. Beim Aufladen fließt heißes Wasser aus einem Wärmetauscher in das Rohleitungssystem des Speichers. Die Leitungen sind von Natriumacetat-Trihydrat umgeben, das die Wärme aufnimmt. Der große Vorteil liegt in einer hohen Energiedichte, da das Speichermedium bei 58° Celsius vom festen in den flüssigen Zustand wechselt.

Der Wärmespeicher lässt sich per LKW transportieren

Wärme aus dem Tank kommt per LKW (Quelle: swilar)

Das junge Unternehmen swilar eetec hat die Technologie zum Patent angemeldet. Bisher gibt es eine Anwendung für ein Schwimmbad in Rothrist in der Schweiz, eine für einen Schulkomplex in der Region Hannover sowie für ein Schwimmbad im bayerischen Kreis Landsberg. Weitere Projekte sind in Planung. „Unser Fokus richtet sich auf dezentrale Nischen, von denen es allerdings über das Land verteilt, sehr viele gibt. Eine wichtige Voraussetzung für unsere Systeme ist, dass Wärmequelle und Wärmesenke mit einem 40-Tonner über eine überregionale Straße erreichbar sind. Zum anderen kommt der mobile Wärmespeicher vor allem für Neuinvestitionen in Frage, wenn noch keine andere Wärmeversorgung vorhanden ist“, erläutert Georg Schneider, Geschäftsführer, swilar.

Konkret bedeutet das: Der Wärmespeicher ist effizient einsetzbar bei Schwimmbädern, Hotels oder Wellnessanlagen, die in der Nähe von Müllverbrennungsanlagen, Biogasanlagen oder Blockheizkraftwerken liegen. Inklusive der Investitionskosten ist eine Wärmelieferung per Container für rund 5,5 Cent/kWh zu bekommen. Die schließt die Kosten für die Wärmetauscher an Lade- und Entladepunkt sowie für Tank und Transportfahrzeug ein. Die Abwärme selbst wird mit einem Preis von 0 Cent kalkuliert, da sie bisher ohnehin in die Luft abgegeben wird.

In Zukunft könnte die Wärmelieferung aus dem LKW auch für Betreiber von Kläranlagen interessant werden, wenn diese aufgrund einer gesetzlichen Vorgabe den anfallenden Klärschlamm trocknen müssen und nicht ein Fernwärmesystem angeschlossen sind. Die nahe der Kläranlage zu installierenden Trocknungsanlagen können mit einem mobilen Wärmetransportcontainer versorgt werden. Für Kommunen besteht die Chance, durch die Nutzung von Abwärme ihre CO2-Bilanz zu verbessern.

 

http://www.energieagentur.nrw

www.vik.de

http://www.lanuv.nrw.de

DEW 21

https://www.energieatlas.nrw.de/site/planungskarte_waerme

http://www.swilar.de

 

Wie sieht eine klimaneutrale Wirtschaft aus? Forschungsprojekte zeigen erste Antworten

An staatlichem Geld fehlt es nicht, um die Corona-Krise zu überwinden und die Wirtschaft neu auszurichten. Gesucht sind Zukunftstechnologien, die kurzfristig nutzbar sind. Im Rahmen der zehnjährigen Forschungsinitiative „Kopernikus“ werden technisch erprobte Technologien für die Energiewende zur Marktfähigkeit weiterentwickelt. Nach vier Jahren Forschungszeit gibt es nun Zwischenergebnisse in den Teilprojekten „ENSURE“, „P2X“ und „SynErgie“.

Seit 2016 erforschen die vom Bundesforschungsministerium geförderten Kopernikus-Projekte, wie Deutschland bis zum Jahr 2050 seine CO2-Emissionen massiv reduzieren kann. Der Fokus liegt auf einer Stromerzeugung aus erneuerbaren Energien in Kombination mit Wasserstoff sowie einem Umbau von Industrieprozessen und Stromnetzen.

Verbrennungsprozesse und chemisch Wertschöpfung basiert heute auf fossilen Ressourcen. (Bildquelle Kopernikus-Projekte)

Quelle: Kopernikus-Projekte

 

Derzeit ist Erdöl der zentrale Energieträger für Verbrennungsprozesse und gleichzeitig grundlegender Rohstoff für viele Produkte der Chemieindustrie. Wird diese Basis durch CO2-freie Quellen ersetzt, hat das Konsequenzen für die gesamte Wertschöpfungskette. Strom ist verfügbar, wenn Solar- und Windanlagen liefern. Industrieelle Prozesse müssen diese Fluktuation berücksichtigen oder mit dem Zwischenprodukt Wasserstoff planen. Denn durch die Umwandlung der erneuerbaren Energie in Wasserstoff, wird diese speicherbar, in großen Mengen transportierbar und auch als Grundstoff für Chemieprodukte verwendbar.

Vom Versuch zur Anwendung

Ziel der Kopernikus-Forschungsprojekte ist, Zukunftstechnologien aus dem Versuchsstadium zur Anwendungsreife zu bringen. Das Chemieunternehmen Covestro aus Leverkusen ist einer der beteiligten Partner aus der Industrie.

„Covestro hat perspektivisch vor, seine Produktionsanlagen weltweit auf die Nutzung von alternativen Rohstoffen und erneuerbaren Energien umzustellen. Dabei ist es wichtig, nachhaltige Technologien in die bisherigen Prozesse einzubringen. Im Rahmen der Kopernikus-Projekte forschen wir an der Nutzung von CO2 unter Einsatz von regenerativer Energie. Ein innovatives Produkt sind Polymethylen-Polymere, bei denen CO2 einer der Bestandteile ist,“ berichtet Klaus Schäfer, Mitglied des Vorstands bei Covestro.

Ein Beispiel für die Verwendung von Wasserstoff als Heizgas ist die Glasindustrie: „Wasserstoff bedeutet für die Glasindustrie nicht nur eine Reduktion von CO2-Emissionen, sondern bringt auch mehr Energieflexibilität:

„So ein Sprung in der Energieflexibilität wäre mit den bisherigen Technologien nicht mehr möglich, da die Verfahren bereits stark optimiert sind,“ erläutert Alexander Sauer, Professor an der Universität Stuttgart und Leiter des Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA.

Auch die Elektrolyse ist ein Teil der Forschung: CO-Elektrolyse bezeichnet einen Prozess, bei dem CO2 zugeführt wird. Auf diese Weise entsteht eine Mischung von Wasserstoff und Kohlenmonoxid (CO) – sogenanntes Synthesegas.

„Synthesegas kann chemisch und auch biochemisch umgewandelt werden und zum Beispiel für die Produktion von längerkettigen Alkoholen für die Herstellung von Kosmetikprodukten genutzt werden. Das Verhältnis von Wasserstoff zu Kohlenmonoxid ist dabei ganz entscheidend für die Anwendung“, erläutert Walter Leitner, Professor an der RWTH Aachen sowie Direktor am Max-Planck-Institut für Chemische Energiekonversion.

Zur Realisierung der Wertschöpfungskette von CO2, Wasser und erneuerbarer Energie kooperieren die Unternehmen Siemens, Evonik und Beiersdorf.

Ob Synthesegas oder Wasserstoff - beide Produkte ermöglichen erneuerbaren Strom auch in anderen Sektoren zu nutzen. (Bildquelle: Kopernikus-Projekte)

Aus Sonnen und Windenergie lässt sich über die Elektrolyse Wasserstoff produzieren. Der Energieträger ist gleichzeitig die Basis für Chemieprodukte. (Bildquelle: Kopernikus-Projekte)

 

Flexibilität beim Strombedarf in der Industrie

In der Modellregion Augsburg erforscht das Teilprojekt SynErgie branchenübergreifend, wie sich energieintensive Produktionsprozesse an eine schwankende Stromversorgung anpassen können. Die Forschungsarbeiten haben sich auf ein Drittel des Strombedarfs im verarbeitenden Gewerbe Deutschlands konzentriert, was etwa 80 TWh pro Jahr entspricht. Als Potenzial für Flexibilität für den Zeitraum einer Minute wurden rund 4 GW Kapazität bei Lastverzicht und 2,7 GW bei einer Lasterhöhung ermittelt. Für eine Flexibilität von 15 Minuten ergaben sich 2,5 GW bei Lastverzicht und 1,1 GW bei Lasterhöhung.

Unterschiedliche Produktionsprozesse - ein Ziel: Flexibel auf die Einspeisung von Sonnen- und Windstrom reagieren. (Bildquelle: Kopernikus-Projekte)

In unterschiedlichen Branchen wird danach geforscht, ob sich Produktionsprozesse an das Energieangebot anpassen lassen (Bildquelle: Kopernikus-Projekte)

Durch den erheblichen Anteil der Industrie am gesamten Stromverbrauch in Deutschland entsteht eine große Hebelwirkung:

„Das sind durchaus relevante Größenordnungen. Die jährlich verschiebbare Energiemenge könnte etwa zwei Drittel der realisierten Erzeugung aus allen deutschen Pumpspeicherkraftwerken abdecken. Unser Ziel ist ein vernetzter automatisierter Prozess von der Windanlage bis zum fertigen Produkt,“ resümiert Sauer.

Der flexible Betrieb von industriellen Prozessen setzt eine entsprechende Informations- und Kommunikationstechnik voraus.

„Kein Produzent wird sich manuell mit der Flexibilisierung des Stromverbrauchs beschäftigen können. Energieflexibilität muss für den Betreiber unsichtbar sein. Bei Neuinvestitionen ist es wichtig, dieses Thema in die Anlage zu integrieren“, betont Sauer.

Ein Beispiel für einen energieflexiblen Betrieb ist die flexible Aluminiumelektrolyse beim Unternehmen TRIMET mit einem Flexibilisierungspotenzial von 22 MW. Eine andere Anwendung findet sich beim Unternehmen Linde:

„Bei Linde erproben wir eine flexible Luftzerlegung FlexASU mit rund 930 MW installierter Leistung in ganz Deutschland“, berichtet Sauer.

Dabei werde die Anlage so betrieben, dass sie möglichst zu Stromspitzen mit niedrigen Preisen produziert, andererseits aber auch runterfährt, wenn Energie im Stromnetz benötigt wird. Wie sich dieser wechselnde Anlagenbetrieb auf die Komponenten und Bauteile der Anlage auswirkt, ist Bestandteil weiterer Untersuchungen.

Andere Anforderungen an das Stromnetz

Das verbindende Element zwischen Erzeugung und Verbrauch ist das Stromnetz. Auch hier ist eine Anpassung an die neuen Vorgaben erforderlich. Das Kopernikus-Projekt ENSURE untersucht dazu die nötigen Energienetzstrukturen. Dabei werden verschiedene Szenarien zur Reduktion von CO2-Emissionen miteinander verglichen. In allen Varianten ist ein deutlicher Ausbau von Photovoltaik und Windkraft an Land nötig.

Stakeholder haben die Szenarien aus ihrer Sicht bewertet:

„Als gemeinsamer Nenner für eine erfolgreiche Energiewende ergab sich der Wunsch nach einer Beteiligung der Bürger an Infrastrukturprojekten sowie nach einer Reduzierung der Auswirkungen auf das Landschaftsbild“, berichtet Jochen Kreusel, Market Innovation Manager bei Hitachi ABB Power Grids und Professor an der RWTH Aachen.

Im Stromnetz werden künftig viele Prozesse autonomer ablaufen müssen. Das wird ebenfalls im Projekt ENSURE untersucht.

„Bisher funktioniert vorwiegend der Schutz des Netzes automatisiert. Um aber gestützte Entscheidungen durch Maschinen zu ermöglichen, sind neue Technologien und Betriebsmittel nötig“, so Kreusel.

Zudem gebe es mehr Gleichstromanwendungen wie Photovoltaik, Batteriespeicher und Elektromobilität. Die neuen Anwendungen kommen zusätzlich dazu und ergänzten die bisherigen Technologien.

Von einer vollständigen Autonomie sind heutige technische System noch weit entfernt. (Bildquelle: Kopernikus-Projekte)

Autonomie von Maschinen ist ein mehrstufiger Prozesse. Üblich ist bisher die Übertragung von Teilaufgaben, der Mensch bleibt verantwortlich. (Bildquelle: Kopernikus-Projekte)

 

Numbering-up anstatt Skaling-up

Auf dem Weg vom erfolgreichen Modellversuch bis zur breiten Anwendung kommt es darauf an, wie die neuen Prozesse ausgerollt werden:

„Ein wichtiger Aspekt einer breiten Anwendbarkeit ist ein Numbering-up im Unterschied zu einem Skaling-up: Anlagen, die dezentral arbeiten und kleine Mengen an vielen Standorten produzieren, ermöglichen an bestimmten Standorten eine bessere Abstimmung mit erneuerbaren Energien als die bisherigen petrochemische Anwendungsketten“, so Leitner.

Ein Beispiel ist ein Modul, das die CO2-Gewinnung, die CO-Elektrolyse und die Anwendung eines Fischer-Tropsch-Prozess verbindet und E-Fuel produziert. E-Fuel kann in den gängigen Verbrennungsmotoren als Ersatz für Diesel, Benzin oder Kerosin verwendet werden. Das Besondere an der modularen Produktionsweise ist, dass die gesamte Wertschöpfungskette in einer Prozesseinheit abgebildet wird. Das Modul in Form eines Containers wurde von dem Unternehmen INERATEC gemeinsam mit Forschern am Karlsruher Institut für Technologie (KIT) entwickelt. Komponenten kommen von Climeworks und sunfire.

Kreislaufwirtschaft als Ziel

Eng mit dem Klimaschutz ist die Frage nach einer Kreislaufwirtschaft verbunden. Covestro will daher seine Produktion auf die Verwendung alternativer Rohstoffe umstellen:

„Wir wollen den Wandel zur Kreislaufwirtschaft beschleunigen. Neben alternativen Rohstoffen wie Altmaterialien, CO2 und Biomasse ist erneuerbare Energie nötig, um zu einer wirklich ressourceneffizienten Kreislaufwirtschaft zu gelangen,“ erläutert Schäfer.

Nachhaltigkeit und Wirtschaftlichkeit bedingten sich dabei gegenseitig. Entscheidend für eine kommerzielle Nutzung seien allerdings geeignete Rahmenbedingungen.

Kommerzielle Nutzung braucht andere Rahmenbedingungen

Die Verfügbarkeit von günstiger Energie ist ein Schlüsselfaktor für den Einsatz von Wasserstoff. Ein Zwischenergebnis des Projektes SynErgie wie auch des Projektes P2X lautet, dass unter zu den aktuellen Marktbedingungen, die technischen Möglichkeiten nicht genutzt werden.

„Zentrale Voraussetzung für eine Entwicklung der Wasserstoffwirtschaft ist eine Reduzierung der Stromkosten. Steuern, Abgaben, Umlagen – kurz STAU – verhindern den Einsatz der Technologie,“ betont Felix Matthes, Forschungskoordinator Energie- und Klimapolitik am Öko-Institut.

„Das bisherige Marktsystem unterstützt die Bereitstellung von Flexibilität nicht optimal“, resümiert auch Sauer. Die Initiative fordert daher die Abschaffung von Regulierungshemmnissen für die Flexibilität sowie die Möglichkeit, Flexibilität unabhängig von der Größe, Energieintensität und negativen Effekten auf die Netzentgelte bereitstellen zu können. Zudem müssten Anreize gesetzt werden, um den Stromverbrauch zu passenden Zeitpunkten zu erhöhen oder zu reduzieren.

Klimaneutralität geht nur mit Wasserstoff

Die Vielzahl der untersuchten Aspekte zeigt, wie komplex und anspruchsvoll das ehrgeizige Ziel einer vollständigen CO2-Neutralität ist. Zumal die Klimaziele seit Beginn der Forschung verschärft wurden. Zunächst sah die Klimapolitik bis 2050 eine CO2-Reduktion von 80 Prozent vor.

„Inzwischen wurde das Ziel einer Klimaneutralität bis 2050 verabschiedet. Die nötigen Maßnahmen gehen über die leicht zu erreichenden Low Hanging Fruits hinaus. Das bedeutet, dass jede Möglichkeit der CO2-Reduktion benötigt wird und die Emissionen bereits bis 2030 deutlich sinken müssen. Damit brauchen wir auch sehr bald ein wasserstoffbasiertes Element in der Volkswirtschaft,“ erläutert Matthes.

Deutschland bleibt von Energieimporten abhängig

Die innovative Entwicklung einer Wasserstoffwirtschaft und der massive Ausbau von erneuerbaren Energien wird allerdings wenig daran ändern können, dass Deutschland ein energiearmes Land ist. Denn die Bedingungen für die Produktion von Strom aus Solar- und Wind sind in anderen Teilen der Welt deutlich günstiger. Allerdings verändert Wasserstoff die Importmöglichkeiten von erneuerbaren Energien. Wasserstoff lässt sich im Gegensatz zu Strom über weite Strecken importieren. Dazu kann ein Pipelinesystem oder bei verflüssigter Form der Seeweg genutzt werden.

 

 

Über die Kopernikus-Projekte

In den Kopernikus-Projekten arbeiten mehr als 240 Partner aus Wissenschaft, Industrie und Zivilgesellschaft zusammen. Teilbereiche sind:

Das Projekt ENSURE entwickelt das Stromnetz der Zukunft: https://www.kopernikus-projekte.de/projekte/ensure

Das Projekt P2X erforscht die Umwandlung von CO2, Wasser und erneuerbarem Strom in Gase, Kraftstoffe, Chemikalien und Kunststoffe: https://www.kopernikus-projekte.de/projekte/p2x

Das Projekt SynErgie untersucht, wie energieintensive Industrieprozesse flexibilisiert und so an die Verfügbarkeit erneuerbarer Energien angepasst werden können: https://www.kopernikus-projekte.de/synergie

 

 

Mal was Neues ausprobieren? Finanzierung der Energiewende aus Steuermitteln

Keine Abgabe für erneuerbare Energien mehr auf der Stromrechnung? In Zeiten von Pandemie und Wirtschaftskrise schaffen es auch ungewöhnliche Vorschläge in die Debatte. Denn die letzten Monaten haben gezeigt, wie schnell sich ein etablierter Rahmen ändern lässt. In diesem Sinne sprechen sich das Finanzwissenschaftlichen Forschungsinstitut der Uni Köln (FiFo), die Stiftung Umweltenergierecht und Deutsche Energieagentur (dena) gemeinsam dafür aus, den Ausbau der erneuerbaren Energien aus dem Bundeshaushalt zu finanzieren und die Umlage auf null zu senken.

Varianten zur Finanzierung von Erneuerbaren

Alternativen zum EEG: Finanzierung über Stromsteuer und CO2-Bepreisung Quelle: dena

Nach einer Kurzstudie von FiFo, Dena und Stiftung Umweltenergierecht gibt es zur Finanzierung der erneuerbaren Energien effizientere Alternativen als das derzeitige Umlagesystem. Eine Kombination von Stromsteuer und Einnahmen aus dem Brennstoffemissionshandelsgesetz (BEHG) könnte nach den Berechnungen den administrativen Aufwand verringern. Diese Auszahlungen an die Betreiber von geförderten Anlagen würden unverändert beibehalten.

Weiterlesen

Kanadisches Startup entwickelt Energiespeicher mit Zink

Effizienter und umweltfreundlicher soll die neue Technologie auf Basis von Zink sein.

Ron MacDonald, CEO, Zinc8, will Energie in großen Volumen speicherbar machen. Bildquelle: Zinc8

In Kanada hat ein Startup bekannte Komponenten neu kombiniert: Entstanden ist dabei eine Zink-Luft-Batterie, die bei Herstellung und Anwendung deutliche Vorteile verspricht. Das Unternehmen Zinc8 erhält derzeit Aufmerksamkeit aus der ganzen Welt.

Strom ist nicht speicherbar. Dieser Grundsatz galt viele Jahre für die Energiewirtschaft und die Stromerzeugung fand auf Basis von Kohle- oder Gasvorräten „just-in-time“ statt. Inzwischen wird intensiv geforscht, wie sich zeitweilige Stromüberschüsse für einen späteren Zeitpunkt konservieren lassen.

Getrieben wird die Entwicklung durch die Stromerzeugung aus Solar- und Windanlagen, deren Produktionszeiten sich nach dem Wetter und den Tageszeiten richten. Zu den bekanntesten Stromspeichern zählen Pumpspeicherkraftwerke und Batterien. Die Einsatzfelder sind dabei unterschiedlich, je nachdem ob die Energie innerhalb von Sekunden oder Millisekunden wieder benötigt wird und wie groß der Speicherbedarf ist.

Ein Start-up aus Kanada hat nun die Batterietechnologie weiter entwickelt und erhält derzeit viel Aufmerksamkeit aus allen Regionen der Welt. Das Unternehmen Zinc8 hält in den USA 20 Patente. Vier weitere Verfahren laufen derzeit noch.

Preisgünstige und verfügbare Rohstoffe

Ron MacDonald, CEO, Zinc8 Energy Solutions, geht davon aus, mit der Zink-Luft-Batterie eine deutliche kostengünstigere Energiespeicherung anbieten zu können, als dies mit bisherigen Batterie-Technologien möglich ist. Die eingesetzten Materialien seien preisgünstig und im Gegensatz zu Seltenen Erden in vielen Ländern verfügbar. Die Technologie sei zudem für große Volumen skalierbar.

Die Kosten für Stromspeicher hängen von den eingesetzten Rohstoffen ab.

Die Rohstoffe für die Zink-Batterien von Zinc8 sind gängig und preisgünstig. Quelle: Zinc8

Weiterlesen

Nachhaltigkeit von Wasserstoff: Die „Farbe“ macht den Unterschied

Prof. Dr. Clemens Hoffmann empfiehlt Wasserstoff dort einzusetzen, wo es keine wirtschaftlichen Alternativen gibt.

Prof. Dr. Clemens Hoffmann hat mit seinem Team in einer Studie den Einsatz von Wasserstoff im künftigen Energiesystem untersucht. Bildquelle: Fraunhofer IEE / Volker Beushausen

Das eigentlich farblose Gas Wasserstoff wandelt sich in der Debatte um ein Energiesystem der Zukunft wie ein Chamäleon. Mit der Anlehnung an eine Farbenlehre soll deutlich werden, dass Wasserstoff sehr unterschiedlich erzeugt werden kann. Denn das ist entscheidend für die CO2-Bilanz und die sinnvolle Nutzung als Energieträger. In einer Studie hat das Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik (IEE) die Effizienz der verschiedenen Herstellungsformen und Anwendungsbereiche verglichen.

Wasserstoff gilt als universelle Energielösung der Zukunft. Allein aus Anwendersicht hat Wasserstoff viele Vorteile. Er ist stofflich vielseitig verwendbar und verbrennt als Energieträger ohne CO2-Emissionen. Dabei wird allerdings außer Acht gelassen, dass Wasserstoff nicht natürlich vorkommt, sondern mit hohem Energieeinsatz produziert werden muss. Ein Forscherteam unter Leitung von Professor Clemens Hoffmann hat nun die Anwendung von Wasserstoff unter Effizienzkriterien untersucht. Die Studie entstand im Auftrag des Informationszentrum Wärmepumpen und Kältetechnik (IZW).

Die Wasserstofftechnologie ist bereits seit langem erprobt, hat sich aber aufgrund der Wirkungsgradverluste, die beim Umwandeln auftreten, bisher nicht in großem Stil durchgesetzt. Erst mit dem massiven Bedarf an CO2-freier Verbrennung kommen die Vorteile von Wasserstoff zum Tragen. Auch die Bundesregierung sieht im Wasserstoff ein strategisches Element für die weiteren Schritte der Energiewende.

Der bisher verwendete Wasserstoff ist überwiegend fossilen Ursprungs. Im Zuge der Dekarbonisierung haben sich weitere Verfahren entwickelt. Die Methoden zur Herstellung von Wasserstoff reichen vom Betrieb eines Elektrolyseurs mit Strom aus erneuerbaren Energien oder Kernenergie, durch Umwandlung von Erdgas oder Biogas mit Abspaltung und Einlagerung des CO2. Um die Unterschiede in der Herstellung von Wasserstoff deutlich zu machen, wird dem Endprodukt symbolisch eine Farbe zugeordnet.

Für die Beschreibung von Wasserstoff werden unterschiedliche Farben verwendet.

Um die Nachhaltigkeit von Wasserstoff zu verdeutlichen, werden die verschiedenen Verfahren durch Farben klassifiziert. Bildquelle: Fraunhofer IEE

 

Grüner Wasserstoff als Speicher für Stromüberschüsse

Sogenannter grüner Wasserstoff wird aus Stromüberschüssen aus Sonnen- und Windenergie über einen Elektrolyseur erzeugt. Der hohe Energiebedarf bei der Herstellung wird dadurch gerechtfertigt, dass die eingesetzte Energie in Zeiten von Erzeugungsspitzen, nicht anders verwendet und auf diese Weise gespeichert werden kann. Durch die Erzeugung von Wasserstoff wird erneuerbarer Strom quasi in die Welt der Moleküle überführt.

Beim grünen Wasserstoff wird zudem noch unterschieden, ob dieser über Elektrolyse aus Stromüberschüssen aus PV- und Windanlagen hergestellt wird oder aus Biomethan oder anderen biologischen Prozessen gewonnen wird. Bei Biomethan wird das CO2 abgespalten und muss über Carbon Capture and Storage (CCS) eingespeichert werden. Dies wäre auch für schwarzen Wasserstoff, der aus der Vergasung von Kohle und Öl gewonnen werden kann, der Fall.

Grauer Wasserstoff wird aus Erdgas hergestellt, ohne dass das CO2 über CCS entsorgt wird. Weitere Klassifizierungen sind pinker Wasserstoff, der über Elektrolyse aus Kernenergiestrom und türkiser Wasserstoff, der über Methanpyrolyse aus Erdgas erzeugt wird.

Als weißen Wasserstoff werden natürliche geologische Wasserstoffvorkommen bezeichnet. Diese sind als freies Gas, als Einschlüsse in Felsformationen sowie als gelöstes Gas im Grundwasser bekannt. Die grundsätzliche technische und wirtschaftliche Nutzbarkeit dieser Vorkommen werden erst in Forschungsprojekten untersucht.

Nach Einschätzung von Fraunhofer IEE sollte künftig ausschließlich regenerativ erzeugter Wasserstoff eingesetzt werden. Die technische- und wirtschaftliche Reife für die Bereitstellung von CO2- freiem »grünem« Wasserstoff für industrielle Prozesse und Mobilität ist nach den Ergebnissen der Studie hoch. Um auf die in Deutschland benötigten Mengen zu kommen, müsste ein erheblicher Teil importiert werden. Die Hoffungen richten sich hier auf mögliche Produktionsanlagen in Nordafrika. Allerdings würde Deutschland dann in Konkurrenz zu anderen Importländern stehen. Daher sollte mit dieser kostbaren Ressource sparsam umgegangen werden.

Blauer Wasserstoff aus Erdgas

Beim CO2-armen »blauen« Wasserstoff sei derzeit unklar, ob Herstellung und Transport es zulassen, dass er überhaupt wirtschaftlicher sein kann, als der elektrolytisch hergestellte grüne Wasserstoff. Zudem ist die Speicherung des abgespaltenen CO2 im Boden umstritten. „Eine Erzeugung hochkonzentrierten Kohlendioxids in Mengen von Milliarden von Kubikmetern pro Jahr wirft ähnlich wie bei der Kernenergie die Frage nach Gefahr eines größten anzunehmenden Unfalls auf. Diese Fragen werden bisher noch gar nicht erörtert“, gibt Hoffmann zu bedenken.

Aus Gründen der Wirtschaftlichkeit wird oft argumentiert zunächst mit „blauem“ Wasserstoff aus Erdgas ein System aufzubauen, bevor Wasserstoff aus erneuerbaren Energien in großem Maßstab zur Verfügung steht. Die Fraunhofer Studie empfiehlt hingegen, die möglichen Anwendungen von Wasserstoff kritisch zu hinterfragen und Alternativen der Dekarbonisierung einzubeziehen. Insbesondere für den Wärmemarkt empfehlen die Wissenschaftler anstelle der bisherigen Gasheizungen Wärmepumpen einzusetzen.

Ranking der Wasserstoffanwendungen

„Wasserstoff sollte vor allem dort Anwendung finden, wo keine alternativen Energieträger zur Verfügung stehen“, so Hoffmann. Als Einsatzkriterium schlagen die Wissenschaftler ein Ranking nach der Effizienz vor. Vorteilhaft sei der Einsatz vom Wasserstoff in der Industrie bei der Herstellung von Ammoniak, Methanol und Stahl. Außerdem sehen die Forscher eine sinnvolle Anwendung in Kraftwerken zur Stromerzeugung, wenn erneuerbare Energien nicht zur Verfügung stehen. Notwendig sei der Einsatz von Wasserstoff in der Erzeugung von synthetischen Kraftstoffen im internationalen Verkehr oder von Rohstoffen wie Ethylen.

Unterschiedliche Anwendungen für Wasserstoff

Wasserstoff sollte möglichst dort eingesetzt werden, wo wenig Alternativen zur Verfügung stehen. Bildquelle: Fraunhofer IEE

Zu den voraussichtlich 2050 benötigten Wasserstoffmengen gibt es verschiedene Studien, die zu unterschiedlichen Ergebnissen kommen. Die Szenarien des Fraunhofer IEE aus dem Energiewende-Barometer gehen von 566 TWh aus. Darin enthalten ist ein Bedarf von 192 TWh für die direkte Nutzung in Verkehr, Industrie und Kraftwerken. Für den internationalen Verkehr im Jahr 2050 und den nichtenergetischen Verbrauch ermittelten die Forscher 306 TWh sowie einen Restbedarf von 68 TWh. Damit liegt die Autoren eher im unteren Bereich der Abschätzungen. Andere Szenarien mit einem hohen Anteil von chemischen Energieträgern erwarten bis zu 220 TWh für den Straßenverkehr, ein Drittel davon für den Schwerlastverkehr.

Alternativen für den Wärmemarkt

Als weitere Anwendung ist der Wärmemarkt in der Diskussion. Hier könnte in den Privathaushalten künftig Wasserstoff anstelle von Erdgas verbrannt werden. Diese Anwendung halten die Wissenschaftler des IEE aber für wenig sinnvoll. Das Heizen von Wohngebäuden könne wesentlich effizienter über Wärmepumpen umgesetzt werden: „Eine Umwidmung des heutigen Anteils von 50 Prozent Erdgas an der Gebäudewärme würde einen zusätzlichen Bedarf von 250 TWh thermischer Nutzung des Wasserstoffs zur Deckung des Wärmebedarfs in Gebäuden bedeuten. Der Wärmesektor würde also zu einer Erhöhung des zukünftigen deutschen Wasserstoffbedarfs um 25 bis 40 Prozen führen“, so Hoffmann.

Die Forscher begründen ihre Empfehlung vor allem damit, dass bei der Herstellung von Wasserstoff die Wirkungsgradverluste erheblich sind, während bei der Wärmpumpe ein Hebel dafür sorge, dass mehr Energie in Form von Wärme oder Kälte zur Verfügung stehe als in Form von Strom eingesetzt werde.

Der Transport von Wasserstoff kann über Pipelines oder Tanker erfolgen. Das gut ausgebaute Erdgasnetz in Europa könnte dazu in Teilen für den Wasserstofftransport umgerüstet werden. In dem von Fraunhofer vorgeschlagenen Szenario würden zudem auf der Verteilnetzebene deutlich weniger Leitungen benötigt, da die Wohngebäude über Wärmepumpen beheizt würden.

 

http://www.iee.fraunhofer.de

Link zur Studie: https://www.iee.fraunhofer.de/content/dam/iee/energiesystemtechnik/de/Dokumente/Studien-Reports/FraunhoferIEE_Kurzstudie_H2_Gebaeudewaerme_Final_20200529.pdf

 

 

Elektrofahrzeuge als Stromspeicher

Stromüberschüsse zum Fahren nutzen

Jorgen Pluym, Honda Motor Europe: Die Technik für netzdienliches Laden ist da. Bildquelle: Honda

Während der Parkdauer können elektrische Autos an das Stromnetz angeschlossen werden und Erzeugungsüberschüsse aus erneuerbaren Energien speichern. Technisch ist sogar umgekehrt möglich, dass die Batterie Strom ins Netz liefert. Hierzu läuft in Großbritannien ein gemeinsamer Modellversuch von Honda und dem Aggregator Moixa. Im Interview mit der Zeitschrift „EW – Magazin für die Energiewirtschaft“ erläutert Jorgen Pluym, Energy Management Project Leader, Honda Motor Europe, welche Perspektiven er für eine Markteinführung sieht.

Das Unternehmen Honda bietet seinen Kunden einen flexiblen Tarif zum Laden von Elektrofahrzeugen an, der Erzeugungsspitzen von erneuerbaren Energien berücksichtigt. Perspektivisch sollen weitere Dienstleistungen wie bidirektionales Laden hinzukommen. Unter dem Namen e:Progress bietet Honda einen ergänzenden Service für Kunden von Elektrofahrzeugen an. Dazu gehöre die Auswahl, Installation der Ladestation und ein flexibler Tarif, der den fluktuierenden Verlauf der Stromerzeugung aus Sonnen- und Windenergie berücksichtige, erläutert Pluym.

Variabler Stromtarif spiegelt Erzeugung durch Sonne und Wind

Der variable Stromtarif für die E-Fahrzeug-Kunden wird von den drei Partnern Honda, Moixa und Vattenfall gemeinsam bereitgestellt. Honda verkauft die Ladestation an den Kunden. Diese kann über das Internet oder das Mobilfunknetz kommunizieren. Der Aggregator Moixa steuert den Ladevorgang über eine Cloud und berücksichtigt sowohl die Informationen zum Stromangebot als auch das Ladeverhalten des Kunden. Vattenfall bietet einen Tarif, der sich nach den Preisveränderungen an den Großhandelsmärkten richtet. Ziel ist es, dass das Auto ausreichend Energie hat, wenn der Kunde es benötigt und genau dann lädt, wenn viel billige Energie im Netz ist, weil die erneuerbaren Energien große Mengen einspeisen.

Modellversuch in London: Autos liefern Strom ins Netz

In London betreibt Honda zudem einen Modellversuch, bei dem die Autos außerdem auch entladen werden, wenn mehr Strom im Netz benötigt als aktuell erzeugt wird. Geplant seien auch Demonstrationsprojekte in Deutschland, berichtet Pluym. Allerdings hänge dies von den regulatorischen Rahmenbedingungen ab. In Deutschland müsse jedes einzelne Gerät durch die Übertragungsnetzbetreiber präqualifiziert werden. Außerdem seien für den Ladevorgang Umsatzsteuer und weitere staatliche Abgaben zu zahlen. Das mache das Angebot schwierig.

In Deutschland sind noch einige Hürden zu nehmen

Bisher werde in Deutschland die Flexibilität in den Märkten von den Übertragungsnetzbetreibern bereit gestellt. Aber mit einem steigenden Anteil von erneuerbaren Energie erwartet Honda, dass die Verteilnetzbetreiber ebenfalls Möglichkeiten entwickeln, um das Netz zu stützen. Dann seien Gesetzesänderungen und Standards in Deutschland nötig, um einen variablen Tarif bundesweit anbieten zu können. Ein kleines Problem sei auch, dass es 900 Verteilnetzbetreiber in Deutschland gebe. In Frankreich gebe es einen, in Großbritannien sechs, in den Niederlanden vier.

Honda ist überzeugt, dass sich der Markt verändern wird. Derzeit werde viel erneuerbare Erzeugung abgeregelt, die eigentlich genutzt werden könnte. Wir akzeptieren daher auch noch geringe Margen, denn wir wollen da sein, wenn die Veränderungen kommen, so Pluym. In Großbritannien seien die Fluktuationen deutlich stärker ausgeprägt.

Das vollständige Interview ist in EW 5/2020 erschienen.

Bildquelle: Honda

https://www.honda.de/cars.html

Zum  Zusammenspiel von Verteilnetz- und Übertragungsnetz: Datenaustausch und Stabilisierung im Verteilnetz